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LPT - Two-Phase Flows 

 

1.0  Introduction  
 

Two-phase flow phenomena exist in a wide variety of engineering applications.  The simulation of 

these particulate two-phase flows with simple or complex geometry is of special interest to many 

scientific and engineering endeavors.  Examples include the design of power-generating devices 

such as internal combustion engines and liquid or solid rocket engines, pollution control, nozzle 

design, filter design, etc.  In each of these applications the two-way coupling of the transportation 

of momentum, heat, and mass between continuous phase and particulate phase plays an 

important role in the nature of these flows. 

 

During the past two decades, two-phase flows have been studied extensively.  To date, two 

generally accepted methods have been used successfully in computer simulation of these two-

phase problems: the Eulerian or Eulerian-Eulerian approach, and the Lagrangian or Eulerian-

Lagrangian (particle tracking approach). 

 

Description of Methodologies 
 

Eulerian 
 
The Eulerian method considers two fluids to exist as continuous phases.  That is, both fluids are 

treated as though they are completely interpenetrating.  This approach is suitable for simulating 

true two-fluid phenomena, such as the interaction of fuel and water.  This method can also be 

employed in cases involving particulate flow where the particle phase can be assumed to behave 

as a continuum, such as dust or smoke in air.  The advantage of this approach is its relatively high 

computational efficiency. 

 
Lagrangian 
 
The Lagrangian approach is a two-phase particle tracking method that allows for the calculation of 

the fluid-particle interaction between a dispersed phase and a continuous fluid.  
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Particles are tracked in a realistic manner by directly modeling the physics of the particle behavior 

in conjunction with the flow field.  The Lagrangian model treats the particles as discrete entities in 

the flow field and calculates their relative trajectories. The continuous phase is simultaneously 

described and consequently solved with an Eulerian approach. The flow field can be laminar or 

turbulent in nature.  With the Lagrangian approach, the solution of the dispersed phase is coupled 

to the continuous phase is coupled to the continuous phase by representing the dispersed particles 

with a specified finite number of computational parcels. A random sampling technique is used to 

calculate the continuous phase flow properties based on the specified turbulence model.  The 

resulting fluctuations in the continuous phase are used in a Lagrangian computation for particle 

motion. In turn, the exchanges of momentum, heat, and mass between the two phases are then 

computed. The main benefit of the Lagrangian approach is its flexibility and its ability to model 

poly-dispersed sprays. 

 

Modeling Lagrangian Two-Phase Flows with STORM 
 

STORM employs an efficient Lagrangian methodology for simulation of two-phase flows and is 

applicable in both laminar and turbulent flow regimes. STORM uses a modified non-iterative 

numerical technique known as PISO (Pressure Implicit with Splitting of Operators ) [1,2] to solve 

the time dependent continuous phase equations using an Eulerian approach. The PISO method 

uses a predictor and multi-pressure corrector with an implicit density treatment to develop the 

coupling between the pressure and velocity fields. The discretized Navier-Stokes equations are 

formed on a non-staggered grid and are integrated implicitly in a time marching fashion. 

 

The effects of the particle phase on the continuous phase are computed by adding the appropriate 

source term to the Navier-Stokes equations.  The motion of the particle phase is simulated using a 

Lagrangian approach, in which a set of ordinary differential equations (ODE) are developed to 

describe the particle trajectories and velocities.  In addition to the predictor and corrector steps of 

the solution procedure within the continuous phase, a global iterative process between the 

particulate phase and continuous phase is required to take into account the interaction between 

both phases. 
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Switch-on Physical Models 
 

Sophisticated physical models have been included which can further describe specific particle 

behavior observed in nature, such as particle evaporation, particle breakup, particle combustion, 

and turbulent particle dispersion.  Particle collision can also be taken into account in STORM 

based on particles colliding with other particles and/or particles colliding with surface boundaries or 

blockages or blockages, including parameters for representing the effects of sticking and bouncing.  

The addition of these switch-on physical models allows for a more accurate description of the 

complex interactions between particulate phase and continuous phase to be modeled. 

 

Particle Injection Modeling 
 

The ability to prescribe detailed injection parameters is built into the Lagrangian scheme, which 

allows the investigator to describe how the particulate phase is injected into the computational 

domain.  The injection parameters cam be used to describe various planar or conical particle-

injection patterns.  Conical injection patterns can be described as being a solid cone or a hollow 

cone geometry and can be applied at any arbitrary angle.  Injection parameters can also address 

non-uniform particle size distributions, which are often encountered in real world particulate-flow 

problems. 

 

Summary 
 

The two-phase flow capability in STORM is a robust fully interacting solution methodology which 

employs the Lagrangian approach to describe particle motion while using an Eulerian method to 

model the continuous phase.  Furthermore, the methodology accurately accounts for the constant 

interaction between the continuous and particulate phases. 

 

The addition of switch-on models and boundary-interaction features allow more rigorous modeling 

of particulate flow phenomena.  The general Lagrangian capabilities represent an enabling 

technology for the investigation of particulate flow behavior found in engineering applications 

across a broad range of industries. 
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2.0  Continuous Phase Flow Equation 
 

In a general turbulent flow the Favre density weighted method of the flow variables is introduced 

into the governing equations. 

 

It is helpful to use tensor notation in writing all governing equations [4]. The Stokes’ hypothesis 

about the bulk viscosity will be used [5]. This assumption implies that the thermodynamic pressure 

p is equal to one-third of the invariant sum of normal stresses. Employing the density-weighted 

averaging procedure [3] along with the k-  two equations model, the governing equations with the 

effect of particles for Newtonian flow are as follows: 
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Energy conservation for static enthalphy: 
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Species conservation: 
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Turbulent transport equation for kinetic energy k: 
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Turbulent transport equation for dissipation:  
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Equation of state for ideal gas: 
 
 p p  R T (7) 
 
The shear stress: 
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Where,  is the ensemble averaged density of the mixture; U i  is the i-th component of the density-

weighted mean velocity.  In the three dimensional space, U i  has three components, U i  = (U 1 , U 2 , 

U 3 ). h is the density –weighted mean static enthalpy, defined by  
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h i  is static enthalpy for each species, defined by  
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Y i  ( i = 1,…, NS) is density-weighted mean mass fraction of the i-th species; NS is total species 

number; h ref  is the reference enthalpy of the i-th species at reference temperature; pic  is specific 

heat of the i-th species; p is mean pressure;   is laminar viscosity; t  is turbulence eddy viscosity, 

defined by  
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P r  is laminar Prandtl number; P rt  is turbulence Prandtl number; S c  is laminar Schmidt number; 

S ct  is turbulence Schmidt number; 


 i  is species production rate. Q is the heat supply.  The terms 

S ,, pm  S PUi ,  and S Ph,  are the source terms contributed by particles, which will be discussed later. 

 

It should be mentioned that the turbulent Reynolds stress and scalar fluxes are modeled from the 

gradient transport model [6], 
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and  
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In equation (5)and (6), the turbulent production term is 
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All constants in the equations above are listed in the following tables. 
 
 
                                                       Turbulence model constants 

 C 1     C 2    C     k        t  

1.45  1.92  0.09   1.0   1.3   0.9 
 
 
                                                     Prandtl and Schmidt numbers   

    P r     P rt        S c     S ct  
   0.7    0.9    0.7    0.9 
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3.0  Continuous Phase Flow Equation 
 

The Particle characteristics are governed by the equation of motion, the equation of evaporation 

and the equation of heat transfer.  These ordinary differential equations will be integrated along the 

particle trajectories. 

 

Particle Motion Equation 
 

The equation of motion for a particle within a fluid continuum, was originally derived by Basset 

Boussinesq and Oseen for a fluid at rest, hence the B-B-O equation, and extended by Tchen [7] to 

the case of a fluid moving with variable velocity. 
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Where   particle starting time, the sub-index   means the particle, v i  is the particle velocity and 

u i  is the fluid velocity, d p is the particle diameter, t  is time   is the fluid laminar viscosity,   is the 

fluid density.  The left hand side of the equation (15) is the initial force of the particle and the right 

hand side are drag forces on the particle, body force and other force on the particle.  The fourth 

term is “Basset” which comes from the effect of the deviation of the flow pattern from steady state.  

Usually, the drag and gravity forces dominate the behavior of the particle; therefore, the 

approximate form of the B-B-O equation reduces to  
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Where, F bi  is the body force acting on the particle per unit mass in the i-direction,   is the particle 

relaxation time and defined by  
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Where, '
iu is the fluid fluctuating velocity effect, C D  is the standard drag coefficient for where 

particle is usually given by [18] and [19] 
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The particle Reynolds number R ep  is defined as 
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The particle position can be determined by integrating the following equation 
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Droplet Evaporation Model 
 

If the particle is a liquid or droplet, the following equation set can describe the relation between its 

size and temperature: 
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Where, evm  is the mass evaporation rate per unit area, LQ  the heat transfer rate per unit area, 

ppC  the particle specific heat, pm  the particle mass, pr  the particle radii and pT  the particle 

temperature.  It is assumed that the particle temperature is uniformed within that particle.  The 

evaporation rate can be calculated by the Frosslin correlation [8]: 
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The particle temperature can be found by introducing the latent heat of the particle (or droplet) L, 

and heat conduction rate at the particle surface per unit area :cQ  
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Where, cS , rP  and mB  are the Schmidt number, Prandtl number and mass transfer number, 

respectively.  They are defined as  
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Where, gD  is the fluid diffusion coefficient, C p  the fluid specific heat and K is the fluid conductivity 

coefficient.  It should be pointed out that gD , pC  and K are highly dependent on the temperature 

and droplet vapor mass fraction at which they are evaluated.  A “one third rule” [9] that utilizes a 

reference temperature equal to the droplet surface temperature plus one-third of the difference 

between the surrounding fluid and droplet surface temperature is used.  sY  can be calculated by 

the same procedure as follows: 
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Where, sY  is the mass fraction for droplet, vP  the vapor pressure at the droplet surface, P the fluid 

pressure, fW  and mW  are the molecular weights of the droplet and mixture, respectively. They can 

be obtained by using a standard thermodynamics table, such as JANAF data bank [10]. 
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The above physical model is only valid for dilute spray evaporation processes.  Radiative heat 

transfer, and near critical and supercritical behavior are not included.  A more sophisticated 

evaporation model, such as the “Group Evaporation” model [11] and/or the “Group Combustion” 

model [12] should be incorporated in the future to study the dense spray effect. 

 

 
Particle Size Distribution Model 
 

Generally, the sizes of particles are non-uniformed.  The size distribution of particles, consist of a 

spectrum of different sizes.  Overall particle size characteristics are represented by their 

distribution curve, which relates to the cumulative percentage of particle number N, surface area A 

or volume V as a function of size D. In many applications an average particle size is desirable 

instead of the complete size distribution.  This average size is chosen as a mean diameter.  The 

general definition of a mean diameter abD  is  
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where,  
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Is a number distribution function, dN and N are the number of particles in the size range from D to 

(D + dD) and the total particle number, respectively. Its corresponding cumulative function F(D) is 
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In the particle tracking application, the so-called “Sauter Mean Diameter” SMD or 32D  is commonly 

used, which is defined as the ration if particle volume to its surface area, etc. 
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Where, D  is the average diameter.  STORM employs two different size distributions.  They are the 

Rosin-Rammler Distribution [13] and  -squared Distribution [13]. 

 
Rosin-Rammer Distribution 
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Where, Q is the fraction of the total volume contained in particles of diameter less than D, X and q 

are correlation constants. The relationship among X, SMD and q is established through the  

function. This model is mostly used in the two-phase flow applications. 

 
-Squared Distribution 
 
The normalized number distribution function for X-squared distribution is defined as 
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The corresponding cumulative distribution function is 
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It should be pointed out that the size distribution is a model to represent the whole particle size by 

a finite number of size ranges.  None of these models is universally better than the other, but 

rather, each has particular benefits for a given application. 

 
Particle Breakup Model 
 

STORM employs two breakup models.  One is TAB (Taylor Analogy Breakup) model of O’Rourke 

and Amsden [14], the second is Reitz’s wave instability model [15]. 
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TAB Model 
 

The TAB model is based on an analogy between an oscillating and distorting liquid droplet and a 

spring-mass system.  The restoring force of the spring is analogous to the surface tension force. 

The external force on the mass is analogous to the gas aerodynamic force. The damping forces 

due to liquid viscosity are introduced to this analogy. 

 
The equation for the acceleration of the liquid droplet distortion parameter is  
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Where the quantity y is proportional to the displacement of the droplet’s surface from its equilibrium 

position, divided by the droplet radius.   and 1  are the liquid surface tension coefficient and 

viscosity respectively at the droplet temperature. After integrating equation (40), it gives 
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where, 
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is the Weber number, 
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is the viscous damping time and  
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is the square of the oscillation frequency. 
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The droplet oscillation and breakup computations require two normalized particle arrays (y for 

deformation and 
dt

dy
 for oscillation), which can be determined by the above equations.  Droplet 

breakup occurs if and only if y(t) is greater than unity.  Occurrence of breakup, the Sauter Mean 

Diameter (SMD) and oscillation velocity for the product drop depend on these two parameters and 

Weber number: 
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Where D is the parent droplet diameter and   the droplet surface tension. Following breakup, the 

product drop has the same temperature with the parent drop and its deformation and oscillation 

parameters are set to zero. 

 
Wave Instability Model 
 
This model assumes that the atomization is described using injected “blobs”, which have the same 

size as the liquid nozzle exit diameter.  The breakup of the blobs and the resulting droplets are 

modeled by the analysis of a wave stability for liquid nozzle.  The wavelength of the fastest 

growing wave,   and the maximum wave growth rate  can be determined by the wave 

dispersion equation for a round jet: 
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Where, 
ep

ep

R

W
Z   is the liquid droplet Ohnesorge number, epW  the liquid droplet Weber number, 

eW  the fluid Weber number, epR  the liquid droplet Reynolds number, ,eWZT   jr the liquid jet 

radius and a the liquid droplet surface tension.  
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The mean product droplet size and breakup rate are given by  

 r  0Bp  if  jo rB   

     = min (( ))
4

3
(,)

2

3
3

12

3

12 


jj rr
 if jrB 0  (48) 

 
and  
 

 



j

pjj

rB

rr

dt

dr

1726.3
 (49)  

 
Where, B 0  and B1  are model constants. B 0  = 0.61, B1  = 10.0 for atomization process and 1.73 for 

droplet secondary breakup [14], 

 

Particle Collision Model 
 

The Particle collision model, which was established by O’Rourke [16], is employed to calculate the 

collision and coalescence among the dispersed liquid phase.  The collision will happen for a pair of 

particles if and only if they are in the same computational cell.  The particles, associated with each 

computational parcel, are assumed to be uniformly distributed throughout the cell where they are 

located.  A collision frequency between the parcel 1 with larger radius r1 and parcel 2 with smaller 

radius r2 is obtained from the following formula 
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Where, v  is the frequency, N 2  the number of particles of the parcel2, 1v  – 2v  is the relative velocity 

between two parcels and dV the volume of the cell, The probability P for n collisions is assumed to 

obey the Poisson distribution: 
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where n  is the mean value ttvn  ,  is the time step.  The collision impact parameters are 

calculated stochastically with the probability information if the collision is coalescence. Otherwise, 

each collision is a grazing one.  The critical impact parameter depends on the particle radius, the 

relative velocity and the surface tension coefficient. 
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Suppose the outcome of the collision is coalescence.  For each collector particle n particles are 

subtracted from their associated parcel, and the size, velocity, etc. are appropriately modified.  If 

there are not enough number of particles to take n coalescence with each collector, then n is 

recalculated so that all N n
2  particles coalesce, and the parcel associated with these particles is 

destroyed.  If the outcome of each collision is a grazing one, only one collision is considered for 

each parcel.  Grazing collisions which usually occur between particles of nearly equal size are 

calculated between N pairs of particles, where, 

 
 N = min (N ,1

n N n
2 ) (52) 

 

Turbulence Modulation Model 
 

Turbulence Modulation effect appears with the presence of the dispersed particle phase.  This 

effect comes into the governing equations (5) and (6) of turbulent kinetic energy and its dissipation 

rate through the source terms S pk ,  and S p, . Shuen [17] obtained the formula by using the 

momentum equation with the source term S pui , ,  
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where, '

iu  is the turbulence fluctuating velocity following the Gaussian distribution.  The 

instantaneous properties of two phase interaction force S pui , , p are given 
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Where, v i  is the instantaneous particle velocity, U i  the fluid velocity,   the particle relaxation time, 

evm  the liquid droplet evaporation rate, pm  particle mass, dV the cell volume, NP total number of 

particles and N p  the number of particles for each computational parcel.  
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The equation (53) and (54) can then be derived as  
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and   
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Summary of Lagrangian Two-Phase Source Terms 
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Coordinate Transformation of Particle Injection 
 

If particle are injected into the computational domain by cone or wedge mode, the cone or wedge 

direction may be in any direction in the space.  In the following figure, it is assumed that coordinate 

xyz is the fixed (or old) coordinate in space, XYZ is the cone coordinate (or new) with the main axis 

directing the injection direction. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the direction cosine is known for XYZ to xyz, then the transformation of the coordinate takes the 

form: 
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Where, I 1 , m 1 , n 1  are the direction cosines of X axis to x,y and z axes, I 2 , m 2 ,n 2 , the direction 

cosines of Y axis to x, y and z axes and I 3 , m 3 , n 3  the direction cosines of Z axis to x, y and z 

axes. 
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